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J. Phys. A: Math. Gen. 16 (1983) 221-236. Printed in Great Britain 

Landau-Lifshitz equation: solitons, quasi-periodic solutions 
and infinite-dimensional Lie algebras 

Etsuro Datet ,  Michio Jimbo, Masaki Kashiwara and Tetsuji Miwa 
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan 

Received 27 April 1982 

Abstract. The hierarchy of the Landau-Lifshitz equation S, = SxS,, C S  XJS with full 
anisotropy is formulated in terms of a free fermion 4(P) on an elliptic curve. An 
infinite-dimensional Lie algebra spanned by quadratic forms of 4 ( P )  is shown to act on 
solutions as infinitesimal Backlund transformations. On the basis of a bilinear identity of 
wavefunctions, an N-soliton formula is proved and quasi-periodic solutions are constructed. 

1. Introduction 

The Landau-Lifshitz equation 

S,  = S x S,, + S x JS 

where 

s = (S1, SZ, S3), s: +s: +s: = 1, 

J = diag(J1, J2, J 3 )  a constant diagonal matrix, 

is a classical equation for nonlinear spin waves in a ferromagnet. An interesting 
feature of this equation is that it contains elliptic moduli. 

Sklyanin (1979) and Borovik found the Lax pair 

aw/ax,=~w, a w/ax2 = MW 

with x1 = x ,  x 2  = -it and 
3 

L =  c zasaua, 
a=l 

Here the spectral parameters (zl, 22, z3) constitute an algebraic coordinate of an 
elliptic curve defined by 

(a, P = 1,2,3). (1.3) 
2 2 1  z - z 0 = 4 (J,  - Jp)  
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Bogdan and Kovalev (1980) found a two-soliton solution: 

f*f -g*g (1.4) S -  * f*g -fg* 
f*f +g*g’  -f*f +g*g 

sz = -1 
f*g +fg* 

’ - f*f +g*g’  
S -  

where 

f = 1 + exp(51+ [z), f* = 1 +c1zhlh2 exp(&+&), 

g = eel+ e‘2, 

5, =ty +klx i+wlxz ,  
w f  = ( k f  - a 2 ) ( k :  - b z ) ,  u ’ = J ~ - J ~ ,  b 2  = J3 - Jz, 

g* = h l  eE1 + hz ee2, 

wJ + k f  - a 2  k l - k z  w i ( k : - a 2 ) - w z ( k : - a 2 )  
wJ -k: + a 2 ’  h, = c12=- k l + k z  w l ( k :  -a2)+WZ(k:  -aZ) ’  

Here the momentum k and the energy w constitute an algebraic coordinate of another 
elliptic curve E defined by 

(1.5) w * = ( k  - a *)(k - 6 ’). 

The curves and E are related by the two-sheeted unramified covering map: - 
T : E-E 

I; = ( z ~ , z z ,  2 3 )  - P = ( k ,  w )  

UJ U 

k = 2 z 3 ,  W =42122. 

If we introduce a Cauchy kernel of the curve E by 

K (P, P’) = :(U + k 2  - w ‘  - k ” ) / ( k  + k ’ )  (1.6) 

the mysterious factor c lZ in Bogdan and Kovalev’s solution is neatly written as 

C I Z  = [4/(a2-62)3K(P1, Pz)K(P:, P?) (1.7) 

where # denotes the involution of E,  

Px = ( - k ,  - U ) .  

In a series of papers (Kashiwara and Miwa 1981, Date et a1 1981a, b, 1982a, b) 
a new method for solving soliton equations has been developed. The heart of the 
method is to recognise that the solution spaces of soliton equations in Hirota’s bilinear 
form can be identified with orbits of infinite-dimensional groups. As the most appropri- 
ate language for the description of infinite-dimensional groups, free fermions are used. 
The principal aim of this paper is to extend the method so that the Landau-Lifshitz 
equation ran also be handled. Guided by the observation (1.7), we introduce a free 
fermion 4 ( P )  on the curve E with the vacuum expectation value 

(vac14 (P)4 (P’)lvac) = K (P, P’). (1.8) 

Then the complete integrability of the Landau-Lifshitz equation follows naturally, in 
the same manner as the previous cases, the Kadomtsev-Petviashvili equation, the 
Korteweg-de Vries equation, etc, where free fermions on the rational curve P’ were 
used. 
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This paper is organised as follows. In § 2, the free fermion 4(P) is introduced on 
the elliptic curve E, and the Fock representation of the operator algebra is constructed 
in terms of the so-called vertex operators. In 0 3, the hierarchy of the Landau-Lifshitz 
and its higher-order equations is shown to be a reduction of the two-component theory 
of the fermion constructed in 0 2. From this follows a bilinear identity, which is 
equivalent both to the linearisation (Sklyanin 1979) in the sense of Lax and to the 
bilinearisation (Bogdan and Kovalev 1980) in the sense of Hirota (1982). Explicit 
forms of N solitons and the corresponding wavefunctions are given. Infinitesimal 
Backlund transformations are shown to form an infinite-dimensional Lie algebra 
isomorphic to sl(2, C[k, k-', w ] ) @ C  0 1. In 0 4, the rational limit a, b +O is discussed 
from the viewpoint of operator theory. Finally, in 0 5 ,  by exploiting the bilinear 
identity, quasi-periodic solutions are constructed (cf Cherednik 1981). 

2. Free fermion on a curve 

We denote by CO, on E the point at infinity with (k, U )  = (00,m) and w/k2 = *l. The 
Cauchy kernel we have chosen in (1.6) has its poles in P at P = PrX and P = CO+, and 
its zeros in P at P = P' and P = 00-. It is so normalised that 

J dPK(P,  P') = 1 

dP = dk/21riw 
where 

and the integration is around P = P'#.  

(1.7). For a meromorphic function a (P) on E we define a fermion by 
We denote by 4 (P) (PE E )  the free fermion with the vacuum expectation value 

4[aI=[ d P a ( P ) 4 ( P ) .  
m+um- 

Here the integration contour is a curve on E which encircles CO, and CO- in a clockwise 
direction (figure 1). The expectation value (1.7) should be understood as follows. 
The contour for d P  integration is so chosen that P" is outside it, while the contour 
for dP'  integration is so chosen that P #  is inside it. This means, in particular, that 
K(P,  P')  +K(P', P) serves as the S function with support at P = P'# for d P  integration 
or dP' integration. 

If a (P) is regular on E - CO, -CO-,  the expectation value 

(vacl4(Q)4[allvac) = [ dPa(P)K(Q,  P) 
m+um- 

Figure 1. Contour of integration on E. 
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vanishes because of the absence of poles on the left bank of the contour for d P  
integration. Similar arguments lead us to the decomposition of the space of fermions 
into the annihilation part and the creation part: annihilation operators, 

4[a]Ivac) = 0 

if and only if (Y (P) is regular on E -CO+ - m-, creation operators, 

(vaclq5[a] = 0 

if and only if a(P) has at most a simple pole at 00- and at least a simple zero at 00,. 

As a basis of annihilation and creation operators we define 

$ 1  = JC J dPk-‘-’c$(P), I//? = J i l  dPk‘hq5(PC), 

for I E Z. Here we have set c = ( a 2  -b2)/4.  They satisfy the anticommutation relations 

m + u m -  m+um- 

[*I, $ m I +  = 0 ,  

$rlvac) = 0 ( I  < 0), 

(vacl$I = 0 (1 t 0), 

[$?, $:I+ = 0 ,  141, *:I+ = SI,. 
Moreover we have 

$7 \vac) = 0 (1 3 o), 
(vac147 = 0 (1 CO) .  

The Majorana fermion is recovered by the formula 

q5(P)=&(h I C Z  k’$!+ I S Z  (-k)-‘-’$?). 

Thus the Clifford algebra generated by q5(P), which we denote by A, and the vacua 
are independent of the elliptic moduli, and they are identical with those employed in 
the study of the KP hierarchy (Date et a1 1981a, b). 

Now we introduce time evolutions. We set 

& ( x , P ) = n  logh = xlk’ f  1 xlc”2(h‘/2-h-’/2). (2.2) 
I odd 1 even 

If we fix a branch of log h, &(x, P) is single valued on a contour on E of figure 1. 
Thus we can define a Hamiltonian by 

(2.3) 

which enjoys the properties 

exp[H, ( x  )I4 (PI exp[-H,, (XI]= e x p k  (x, P)14 (PI, 
Since 

H,,(x)lvac) = 0. 

J d ~ :  4 ( ~ > 4  (P”): = 0,  
m + u m -  

there is no ambiguity in the definition of H,,(x) caused by the ambiguity of the branch 
of log h. 

The Fock space A [vac) can be realised by exploiting the time evolution induced 
by the Hamiltonian H,,(x).  Namely, as we shall see below, for a E A, alvac) = 0 if and 
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vanish identically. In (2.5) we have set 

dp 4 (P). 
,um- 

4 0  = I, 
In other words, the pair ( f, (x ; a) ,  g, (x, a ) )  represents the vector a /vac). For 

instance, by using (A4) and (A5), we have 

- 1-N/2 - 
;ex.( f (,(x, P ~ ) ) c - ~ ( ~ - ’ ) / ~ (  fi h(Pj)) n K(Pi, Pj) (N  even), 

j = l  j = l  1si.jGN 

( N  even). 

The action of 4 (P) in A /vac), 

aIvac)-4(P)aIvac), 

can be realised in terms of a kind of vertex operator. To see this, first we introduce 
a shift operator 9 (P) for P E  E near 00, by 

and for P E  E near 00- by 

The following are direct consequences of the definition. 
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In (2.7) the branch of (h(P))’/’ should be carefully chosen: 

( h  (P))”’ = k/ JC + . . . 
(h(P))’ / ’=-JL/k  + . . .  
Thus we have shown that the action of q5 (P) is realised by the following 2 x 2 linear 
differential operator of infinite order: 

for P = (k, k 2 [ ( 1  - a z / k 2 ) ( 1  -b2/k2)]”’), 

for P = (k, -k2[(1 - a 2 / k 2 ) ( 1  - b2/k’ ) ] ’ / ’ ) .  

(fn ( x  ; 4 (P)a  1) 
g n  ( x  ; 4 (PIU 1 

) 
0 (ch (P))”’ exp[tn ( x ,  P ) I ~  (P) 

= (exp[t.(x, P)19(P) exp (+/an) 0 

(;E ;; :;). 
In particular, if fn ( x  ; a )  = g,(x ; a )  = 0, then a \vac) = 0. 

in terms of scalar vertex operators on the space of f n ( x ) .  In fact, we have 
The infinite-dimensional Lie algebra of quadratic elements in A can be realised 

(2.9) 
The Heisenberg algebra ( 0 1 ~ ~  Cx1)OCn O(Olal Cd/t3xl)OCd/an is contained in 

4 ( P ) 4  (0) = K ( P ,  0) exp[tn(x, P) + Sn ( x ,  Q)lg(P)g(Q) exp (-a/an). 

this Lie algebra. From (2.2) and (2.3) follows 

a 
log h : q5 (P)q5 (P”): dP. 

In order to obtain the expressions for X I  and n ,  we specialise (2.9) to 

:4 (P)q5 (P”): 
= lim (4 (P)4 (P‘) - K (P, P’)) 

P‘-P” 

= c ( h  -h-’)  1 (lkf-’xf+k-‘-’ a/ax,) 
I odd 

From this follows 

k-‘: 4 ( P ) 4 ( P C ) :  dP, 

(ch)-’/’: 4 ( P ) 4 ( P ” ) :  dP, 

I a 1, odd, 

13 2 ,  even, 
1x1 = 

:q5(P)q5(P#): dP. 

(2.10) 

(2.11) 
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3. Landau-Lifshitz hierarchy 

The Landau-Lifshitz equation (1.1) was put into bilinear form by Hirota (1982) 

D l ( f *  - f+g* * g )  = 0, 

[ D ~  -0: + $(a2  + b2)] f*  * g + $(a2  - b2)g* - f = 0, 

[ D ~ - D :  +$(a2+b2)]g*  o f+$(a2-b2) f*  g =O. 

( D z - D ? ) ( f *  - f - g *  * g ) = O ,  

(3.1) 

Here f, f*, g and g* are related to the spin variables Sa by (1.4). We are now going 
to solve (3.1) in terms of field operators. 

Let d" ' (P)  (i = 1,2)  denote copies of the free fields introduced in 0 2, and let 
HL'(x)  be the corresponding Hamiltonian, For an element g of the Clifford group 
generated by d"'(P) ( i  = 1,2) ,  we set 

m (3.2) rnln2 (x' l ' ,  x " ) )  = (vacle glvac), 

g n l n 2  ( x  , x"' )  = (vacbo do e h a c ) ,  

W ; ) , , ~ ( X ( ' ) ,  x ( " ;  P )  = (vacl4;' eW4(ji ( ~ ) s  Jvac) 

(1) '1) (2) HI 

( i , j  = 1,2),  (3.3) 

where W = H!,') ( x ' l ) )  +Hk: ( x " ) ) .  It can be shown that (3.2) and (3.3) provide respec- 
tively the r functions and the wavefunctions for a certain hierarchy of nonlinear 
equations of KP type (cf Kashiwara and Miwa 1981, Date et a1 1981a, b). Here we 
focus our attention to a reduction thereof. Namely, we consider a subgroup of the 
Clifford group, consisting of elements 9 with the property 

(94 ( ' ) (P) ,  94'2'(P))  = (4"'(P)s, 4'2'(p)s)T(P),  
(3.4) 

T(P): 2 x 2 matrix, T(P)TT(P")  = 1, det T ( P )  = 1. 

Henceforth we always assume (3.4). This condition implies that g commutes with 
:4 ( ' ) (P)4 ( ' ) (P#) :  + : ~ ( 2 ) ( P ) q 5 ( 2 ) ( P # ) : ,  and hence with HL1' ( x )  +H? ( x ) .  The time 
evolution e"g e-m of g is then invariant under the change (n 1 ,  n2) -(n + n,  n 2  + n ) ,  

actually depend only on the difference n = nl -n2 and x =x '1 i - x '2 f=  (xl, x 2 , .  . . ). 
(x' l ' ,  x ' 2 i ) H ( x ( 1 ) + x ,  x (2) + x ) .  Therefore, T, ,~ , ,~ ,  gnln2 and wz'n exp[-&,i(x(i), P ) ]  

We have then the following result. 
(1) The combination 

- - 
f = Tn1n2, f*=rn1+1 n2'  g = JCfln1n2, g* = JcUnl+1 nz (3.5) 

solves the bilinear Landau-Lifshitz equations (3.1) and their higher-order analogues 
given below. 

(2) The matrix 

satisfies the linear equations of the form (1.2), and similar equations with regard to 
x 3 ,  x 4 .  . . as well. 
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(3) A bilinear identity for wavefunctions 

c J ~ a ( ~ ) w " ' ; ~ 2 ( x " ' , x ' ~ ' ; ~ ) w " Y ~ , ( x " ~ '  n i n 2  9 x'2 ' ' ;p#)=o ( i ,  j = 1 , 2 )  
w=1,2 m+um- 

(3.7) 

holds for any n l ,  n2 ,  x ' l ) ,  x"),  n ; ,  n ; ,  x " ) ' ,  x")' and any function a ( p )  holomorphic 
except at 03,. Here the left-hand side signifies (minus) the sum of residues of the 
integrand at 03,. 

In the definition (3.6), we have inserted the factor ( h ( P ) ) * 1 ' z c ~ 1 ' 2 ( z 2 ~ z 1 )  so as to 
adjust the behaviour of W,(x ; P )  at 03, as 

Thus W,,(x ; P )  is defined on the covering curve 
matrix elements satisfy the symmetry 

(1.3) rather than on E (1.5). Its 

w n ( x ; ~ # ) 1 1 =  Wn(x;P)22, Wn(x;P#)21=-Wn(x;P)12 (3.9) 

and 

det W,,(x; P )  = 1, 

which imply W,, ( x  ; P)= W,, ( x  ; P") = 2 x 2 unit matrix. 
In terms of Wn(x;  P ) ,  the bilinear identity (3.7) reads 

(3.10) 

for any ( n ,  x ) ,  (n ' ,  x ' )  and a ( P )  E C [ k ,  w ] .  

Example. Put 

with Pi ZPY (i Zj). The requirement (3.4) 
gives an N-soliton solution 

(3.11) 

is satisfied. With this choice of 9,  (3.5) 

(3.12) 

where r ranges over 0, 1, . . . , N, hi = h(Pi) ,  

e', = -&ai exp[en(x, pi)], c,, = c- 'K(PiPj)K(PYPT) 

and c i l . .  , i, = ne,, ciWi,. The corresponding wavefunctions (in the notation (3.8)) are 
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(3.13) 

For instance, formulae (3.12), (3.13) for N = 2 read respectively 

f = 1 + c12 exp(51 + &), 

g = esl+ e‘2, g*=hle‘ l+h2eSz 

f * =  1+c12hlhzexp(t1+52), 

and 

Gn(x ;  P) = 

In the derivation of (3.12) and (3.13), we have used Wick’s theorem and the formulae 
(A4), (A5) in the appendix. 

Let us sketch how to prove the assertions (1)-(3). In particular, when specialised 
to 9 of the form (3,11), the following argument will provide a proof of the N-soliton 
formula given above. 

First we show that the bilinear identity (3.7) is a simple consequence of the property 
(3.4) of 8.  Namely, using (3.3) and (3.4), we can rewrite the left-hand side of (3.7) into 

(3.14) 

with W’ = H(nli (x“”) + Hk2i (x‘~)’) .  On the other hand, we have, for any 4‘*)(C?) and 

j d ~ a  (P)(vacld:) e”s#J‘”’(P)lvac)(vacl4 e”’g4‘”’(P#)lvac) 
Y = 1,2 

#J‘% ), 

d P  a (P)(vaclr#J ‘* ’( Q)d ‘”’(P)lvac)(vacl4 ‘&)(Z?)#J ‘”’(P”)lvac) = 0, 

and hence I d P a  (P)(a14‘”’(P)Jvac)(bl4‘”’(P”)lvac) = 0 

for any vectors ( a [ ,  (bl. This shows the vanishing of (3.14). 

in terms off,  f*, g and g*: 
In order to find bilinear equations, we exploit the expansions of Wn(x; P) at CO, 

k n ( x ;  P )  = 

) - g * ( x l + p + - ’ X 3 + 7 , .  1 1 1 . . 
2ch 3k 

, . . .  

(3.15) 
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W n ( x ;  P”) = 

1 1 1 
. . ) - g ( x l - k ’ X 2 - - . x 3 - ? ,  2ch 3k . . . 

1 1 1 ) f ( x l - k ’ x 2 - - , x 3 - - j , . . .  2ch 3k 

as k +CO,  Jch= k +. . .+CO. In the language of operators, (3.15) is a direct con- 
sequence of the formulae (2.7), (2.8) for vertex operators. The bilinear identity (3.10) 
also enables us to derive (3.15) directly. Namely, suppose a matrix W n ( x ;  P) satisfies 
(3.9) as well as 

Changing Wn ( x  ; P )  into 

if necessary, we can then show the existence of functions f ( x ) ,  f * ( x ) ,  g ( x )  and g * ( x )  
such that (3.8), (3.9) and (3.15) are valid. 

Substituting the expansions (3.15) into (3.10), we obtain the foilowing generating 
functions of bilinear equations: 

Resk=co- a(k,  w)G(k, D )  coshF(y; k, D ) ( f *  . f + g *  g )  = 0 

for a (k ,  U )  = a(-k, - w ) ,  

dk 
w 

dk 
Resk=,-a(k,w)G(k,D)sinhF(y; k,D)( f*  . f - g *  Q g)=O 

w 

for a(k,  w )  = -a(-k, - U ) ,  

Reskzm - a(k,  w)(h(k))’”’G(k, D )  sinhF(y;  k, D ) f *  g 
dk 
w 

dk 
= Resk=30- a(-k, -w)(h(k))”/’G(k, D )  sinhF(y;  k, D)g* ’f. 

w 

(3.16) 

Here we have set 

1 1 1 -Dn+ 1 ~ 

n odd nk n even n (ch )”’’ Dn) ’ 

The parameters yn  and the polynomial a(k,  w )  E C[k, U ]  are arbitrary. Calculating the 
first few equations in (3.16), we obtain, as well as (3.1), 

(Dz+D?)(f* * f + g *  ’ g ) = O ,  

( 2 0 3 + D : ) ( f *  ’ f + g *  g ) = o ,  (D3 -0: )(f* * f - g * ’ g ) = 0, 

DlD’(f* * f+ g* ’ g )  = 0, [DiDz-D: + ( ~ ~ + b ~ ) D l ] ( f *  * f - g *  * g)=O, 
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(D3--D:)f* ' g = 0, 

[D1D2-D:  ++(aZ+b2)D1]f* * g-3(u2-b2)D1g* * f =o,  
[D1D2-D: S+(aZ+b2)D1]g* * f -t(UZ-b2)D1f* * g =o .  

(D3-D:)g* * f = 0, 

Existence of linear equations for Wn(x; P) is also a consequence of the bilinear 
identity (3.10). Choose a matrix Bj(x ;  P) so as to satisfy the conditions 

1 1 
(i) ( ( h ( P ) ) - ~ / 2 ) B j ( ~ ;  P)( h(P))l,z) is a polynomial of k and w ,  

) asP+co,. a O(k") O(1) 
0(1) O(k") (ii) ~ ~ ( x  ; P) -- w,(x; P) * w,,(x; PI-' = ( axj 

Such a matrix always exists and is unique. The principal terms of 
(a lax , )  Wn(x ; P )  * Wn(x ; P)-' in the sense of (ii) are explicitly given by 

a 
axj  (f* * f + g* - g)  - Wn(X ; P) * Wn(X ; P)-l 

1 f * . f - g * . g  
2 f * * g  - f * . f + g * * g  3 p n ( D ,  k )  5 ( 

2f**  
-f* * f + g *  * g ) (P'co-), 1 f * - f - g * g  

g* * f 
-pn(D, - k )  2 ( 

modulo O(k-') ,  where 

Rewriting the coefficients of Bj(x ;  P) in terms of Sa in (1.4), we find 
3 

a = l  

3 

~ l ( x  ; P) = 1 Sazaca, 

3 as, is a p y ~ p  - zaea + 2212223 1 S , Z , ' ~ ~ ,  B ~ ( X  ; P) = C 
a.P,v = 1 ax a=1 

and so forth, in agreement with (1.2). The equation of motion corresponding to the 
x 3  flow reads (cf Sklyanin 1979) 

Differentiating (3.10) and using (i), we get 
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for any a (P) E C [ k ,  w ] .  In view of the growth condition (ii), we thus conclude that 

a w , ( X ; P ) / a x j  = B j ( x ; P ) W n ( x ; P ) .  

This provides the Lax equations for the Landau-Lifshitz hierarchy. 

the following form act as infinitesimal transformations of solutions: 
From the operator representation (3.2), (3.3), we see that quadratic elements of 

where a ( P ) ,  p ( P ) ,  ~ ( P ) E  C [ k ,  k - ’ ,  w ]  and c E C. In view of (2.10) and (2.11), the 
first line of (3.17) corresponds to generators of the Heisenberg algebra a/ax!,” -d /ax! ,” ,  
x!,’’ - x i 2 )  and 1. Oil the other hand, (3.11) shows that 4(1)(P)q5(2’(P#) serves as the 
infinitesimal Backlund transformation which sends an N-soliton solution to an (N  + 
1)-soliton solution. This is the meaning of the second line of (3.17). We can represent 
(3.17) in the basis 4”’(P) by a 2 x 2 matrix 

and a scalar c E C. The bracket of two such elements is then given by 

[ A ( P ) + c  l , A ’ ( P ) + c ’ *  l ] = [ A ( P ) , A ’ ( P ) ] + c ( A , A ’ ) *  1, 

where the bracket on the right-hand side is the usual matrix commutator, and 

c(A, A’)  = Resm, Tr A ( P )  d A ’ ( P ) .  (3.18) 

In this sense, the Landau-Lifshitz hierarchy allows as infinitesimal transformations 
the Lie algebra 

~ l ( 2 ,  C [ k ,  k - ’ ,  w ] ) @ C  1 

whose rule of central extension is given by (3.18). 

4. Isotropic limit 

As was pointed out by Sklyanin (1979), the equation (1.1) is a classical and continuous 
limit of the XYZ model. In the XXX case (J1 = J2  = J3)  the elliptic curve degenerates 
to a rational curve. The bilinear equations for this particular case are obtained from 
(3.16) by setting a = b = 0 (Hirota 1982). In this section we show how to scale soliton 
solutions and the corresponding wavefunctions in the limit a, b + 0 .  Since c i 0 in 
(3 .3 ,  this is not definitely obvious. 

We start from the M + N soliton with 

in (3.2) and (3.3). Here we choose Pi ( j  = 1, . . . , M + N )  to be near CO,. From (2.1), 
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the following limits for P near 00, exist: 

(4.1) 

5. Quasi-periodic solution 

In this section we construct quasi-periodic solutions of the Landau-Lifshitz equation 
by constructing wavefunctions which satisfy the bilinear identity for the Landau- 
Lifshitz equation (3.10). 
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Let C be a non-singular algebraic curve of genus g with a double covering map 
r : C + E  not ramifying at 03, E E. We assume further that C admits a fixed-point 
free involution L compatible with the involution # on E :  # 0 r = r 0 1 .  Let be the 
quotient of C by L and rl : C + be the projection. By the Riemann-Hurwitz formula, 
we have g = 2g - 1, where g is the genus of c. Let T-'(co,) = CO:), CO:). As local 
parameters around mp', a = 1 ,2 ,  we take ( k  0 r)-' = L-', where k. is the rational 
function on E. 

We want to construct functions u , ( x ,  P ) ,  i = 1,2 ,  P E C with the following properties: 
(i) U ,  (x, P )  are meromorphic on C - {OO:), CO?)} with pole divisors D, independent 

(ii) at CO?' (a = 1, 2), u , ( x ,  P )  ( i  = 1, 2) behave like 

u ,  (x, P )  = ( o ( P : ~ ) )  exp[t(x, P ) ]  

u , ( x ,  P I  = (~ ( i ' ! ; ) )  exp[-t(x, P I ]  

of x ;  

at CO(:), 

at 03, , I +  - --[::I E E ,  ( 2 )  p a )  - 
112 1 / 2  - where [(X, P )  = 2) o d d s 1  x,p + El even,l X, (h'J'2 - 6- )C , h = h 0 r ; 

(iii) for a rational one-form 8 on C such that 1*8 = 8 and having no poles and 
zeros at CO?), uI(x, P )  satisfy the bilinear identity 

We assume that functions u i ( x ,  P )  satisfying the above conditions (i), (ii), (iii) exist. 
We put 

f = B / r *  dP, f o 1 = f  

Vij(X, P )  = U i ( X ,  F j ) ( . f ( F j ) Y ,  

and define functions Vi i (x ,  P )  in the neighbourhood of CO, as 

r(Fj) = P, Fj near CO,. 

We set 

Then the function V(x,  P )  satisfies the bilinear identity on E 

V(x ,  P)TV(X' ,  1P) dP = 0 (5.1) 

in view of the invariance off  with respect to 1 .  

by the above conditions (ii), (iii). First, from (iii) we must have 
Now let us examine the conditions on the location of the pole divisor D, imposed 

D, + LD, < ( e ) ,  i ,  j = 1 ,2 .  
Hence in the generic case, we have D1= D2 = D, deg D = g - 1, and (iii) is rephrased 
as 

(iii)' D + LD = (e ) ,  1*e = e. 
If we denote by Di(x) the zero divisors of u l ( x ,  P ) ,  the condition (ii) implies that the 
images of D , ( x ) - D  in the Jacobian variety J(C) of C move in the Prym variety P 
(= the  odd part of J(C) with respect to 1 ) .  In other words, the translate of P by the 
image of D in J(C) should lie in the theta divisor (0) of J(C). 
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Summarising, we must have 
(a) D +LD = ( e ) ,  l * e  =e,  D > O .  
(b) P+image of D c (0) in J(C). 
Conversely, the above conditions (a), (b) are sufficient for the existence of ui(x, P) 

On the other hand, the following is known in the theory of algebraic' curves with 

The Prym variety P is a principally polarised abelian variety. 
We put 

satisfying (i), (ii), (iii)'. 

a fixed-point free involution (cf Fay 1973). 

A,,,, = {D: divisor on C, D > 0, deg D = g - 1, .rrl*(D) = Kc, i ( D )  = even}, 

Aodd = {D: divisor on C, D > 0, deg D = g - 1, .rrl*(D) = Kc, i ( D )  = odd}, 

where . r r l Q )  is the image of D on e, Kc  is the canonical divisor of and i ( D )  is the 
irregularity of D (= the dimension of the vector space of one-forms on C which have 
zeros at D ) .  Then we have 

p = p o d d  P e v e n  

where 
Podd={image of Aodd in J(C)}+A+S1, 

P,,,, = {image of A,,,, in J(C)} + A. 

Here A is some constant depending on the choice of the basis of Hl(C,  E ) ,  Ho(C, Cl') 
and the base point of the map C + J(C), and S1 is some half-period in J(C). Further, 
P,,,, is the zero divisor of the theta function Qp associated with the Prym variety P. 

Now we determine the choice of our divisor D. First of all, a diviso1 D satisfying 
(a) must be an element of either A,,,, or Aodd. The above relation among P, Aodd 
and A,,,, shows that for either choice of D the condition (b) is also satisfied by 
suitably modifying the behaviour of ui at m2). More explicitly, for D EAodd (resp 
A,.,,), we take l?: = 0, I:"+' = 1, a = 1, 2 (resp 1;: = 0, I:? = 1, l\?, I : .  = 0) in (ii). For 
such a choice of l!:), the bilinear identitX(5.1) on E is the same as in the previous 
section (3.10). Thus we have constructed a solution of the Landau-Lifshitz equation. 
By a standard technique, we can express the functions ui(x, P )  in terms of the theta 
function aP mentioned above and abelian integrals on C. The corresponding T function 
is then shown to coincide with Qa (cf Date et a1 1982b). 

Finally, we must note that another construction of quasi-periodic solutions of the 
Landau-Lifshitz equation was done by Cherednik 1981. The similarity between his 
construction and ours is yet to be clarified. 
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Appendix 

Here we summarise several formulae related to the Cauchy kernel 

K (P, P ' )  = (U + k - W '  - k ' * ) / ( k  + k') 
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and 
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h(P)  = (w + k 2  - a 2 ) / ( w  - k 2  + a 2 ) :  

K(P, P‘) = -K(P’, P), 
K (P, P’) = h (P)h  (P’)K (P”, P’”), 

( A I )  
h ( P )  = h(P”)-’, 

K ( P ,  P’)K(P, P’#) = c h(P) ,  wherec = a ( a 2 - b 2 ) ,  

k -k’ 
1 - h (P)-’h (PI)-’ ’ 

- - h (P) - h (P’) 
k + k’ K (P, P’) = c 

1 k - k ’  h(P) -h (P’ )  
C k + k ’  1-h(P)h(P’ )  c(P, P’) =-K(P,  P’)K(P’# ,  P”) = - 

For N even, 

Pfaffian(K(Pi, Pi)) l s i , j s N  

For N odd, 
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